(c) 2000-2003 by Akira Miyoshi. All rights reserved.
[Top]
問題 : [1] [2] [3] [4] [5]
解説 : [1] [2] [3] [4] [5]
2003 物理化学及び演習 II [第3部] : 演習問題 4

[演習問題 4]   化学反応の平衡定数 (HCN HNC)

  反応 A B の濃度平衡定数は、

    (4-1)

で与えられる。 ここで [A]e , [B]e は平衡における A, B の濃度、 Q (A), Q (B) は A, B の (単位体積あたりの) 分配関数、 E は反応のエネルギー差 (B の A を基準にしたエネルギー) である。
  分子の(単位体積あたりの)分配関数は、 分子のすべての運動の分配関数の積で表わされる。

Q = Q trans Qelec Qvib Qrot     (4-2)

Q trans, Qelec, Qvib, Qrot はそれぞれ、並進運動の (単位体積あたりの) 分配関数、 電子状態の分配関数、 振動分配関数、 回転分配関数である。
  今ここでは、HCN 分子の異性化反応

HCN HNC     (R3)

を考えることにする。 HCN も HNC も一重項の分子であり、 電子状態の分配関数はいづれも1である。 並進の分配関数は質量のみに依存し、 両者の質量は等しいので、 考えなくてよい。 したがって、(4-1) 式中の分配関数の比の部分は、 振動と回転の分配関数のみで書き表される。

    (4-3)

  分配関数は、 分子の個々の状態の多重度をボルツマン因子を掛けて 足しあわせたものである。

  (gi : 状態 i の多重度, Ei : 状態 i のエネルギー)     (4-4)

振動の分配関数は、 振動自由度が1つしかない2原子分子では、

Qvib (2原子分子) =     (4-5)

となる。

[問題 4-1]
  (4-5) 式の和が等比級数であることから、 次式を導け。
Qvib (2原子分子) =     (4-5')

  m 個の振動自由度がある多原子分子では、 (4-5') 式を個々の振動の振動数 i   について計算して、 掛け合わせたものになる。

Qvib (多原子分子) =     (4-6)

[問題 4-2]
  HCN と HNC はいづれも4つの振動自由度を持ち、 振動の波数は HCN が 794, 794, 2177, 3286 (cm-1)、 HNC が 484, 484, 2062, 3655 (cm-1) である。 1000 K および 3000 K における、 振動分配関数の比 Qvib (HNC) / Qvib (HCN) を計算せよ。 次式を用いると計算が効率的になる。

  直線分子は2次元の回転の自由度を持ち、 (4-4) 式の和を積分に置き換えることで、 次の式で近似できる。

Qrot (直線分子) 〜   (B : 回転定数)     (4-7)

[問題 4-3]
  HCN と HNC はいづれも直線分子であり、 その回転定数は、それぞれ 1.534 (HCN)、 1.555 (HNC) [cm-1] である。 回転分配関数の比 Qrot (HNC) / Qrot (HCN) を計算せよ。
  HNC のエネルギーは HCN よりも、49.8 kJ mol-1 高い。 1000 K および 3000 K における、HCN と HNC の平衡定数、 KC = [HNC]e / [HCN]e を求めよ。