Assumption: statistically equal distribution in final states
Involves neither intermediate nor transition state
0th order approximation
cf.) Photodissociation of diatomic molecules (HCl, HI, etc.):
(excess energy)
distributes only in translation
| ex.) | Photodissociation of HCN at 215 nm (46512
) : | |||
HCN + (46512
) |
H + CN( = 0)
+ 3211 ![]() |
[channel-0] | ||
H + CN( = 1)
+ 1151 ![]() |
[channel-1] | |||
rel. translation + CN rotation | ||||
Probability of a specific rovibrational state

(3.1.1)
| ex.) | Rotational distribution of CN via channel-1
![]() | |
( max = 24, fig. 3.1) |

Fig. 3.1 Rotational distribution of CN formed via HCN +
(channel-1)
Probability of a specific vibrational state (indistinctive of
rotational states)
Rotational sum:
,
(3.1.2)
(summation
integration)
(3.1.3)
| ex.) | Branching ratio of channel-0 : channel-1 = (3211)3/2 :
(1151)3/2 4.66 : 1 |
|
Problem-3.1 [OPTION] Derive an equation similar to 3.1.3 for the case that an atom and a non-linear molecule (3-D rotation) are formed. |
[Rotational Sum]
Rotational sum for the case that two fragments are formed
(i.e., Branching probability for the specific vibrational state) :
(3.1.4)
(3.1.5)
: Energy partitioned into
translation and rotation
(
: Total excess energy)
: Translational degree of
freedom (= 3),
: Number of rotators,
: Total rotational degree of
freedom (
)
for integer
:
,

for half integer
:
,
, ...
[Coefficients for rotational sum (eq. 3.1.5) for specific cases]
|
Problem-3.2 1) Calculate the prior vibrational energy distribution of OH formed via the reaction O( ) + H2
OH + H
( = -182.2
) at 298 K.
Considering the thermal energy of the relative translation,
, and that of rotation,
, (note that
= 2 for H2),
the total excess energy at temperature is;
.
The vibrational frequency of OH is 3568 .2) [OPTION] Calculate the prior rotational distribution OH in its vibrational ground state ( = 0) formed in the
above reaction.
The rotational constant of OH is 18.51 .
|
Branching probability for a reaction channel
(vibrational sum)
| ex.) | O( ) + HD |
H + OD | channel-a | ||
D + OH |
channel-b | ||||
[O( ) + H2
OH + H] = -182.2 ![]() Vibrational frequencies ( ) -
OH: 3568, OD: 2632, H2: 4162, HD: 3633Rotational constants ( ) -
OH: 18.51, OD: 9.87(after ZPE & thermal corr. @ 298 K) (a) =
15952, (b) = 15484
( )![]() max(a) = 6
[15792 ],
max(b) = 4
[14272 ] | |||||
Branching ratio =
= 1 : 1.017 | |||||
| cf.) | summation integration | |
(3.2.1)note) ![]() ![]() |
[Vibrational sum]
General formula by replacement of summation by integration :
(3.2.2)
,
: vibrational degree of freedom,
i : vibrational frequency
: excess energy
measured from the classical origin
| ex.) | O( ) + CH4
OH + CH3
( = -182.3
)- Prior vibrational distribution of OH (298 K) | ||
Motion other than OH-vibration (3.2.2),
OH = 3568
![]() ZPE(CH3) = 76.1
= (182.3 + 76.1) [ ] + 3RT = 22222
![]() cf.) = 182.3
[ ] + 3 = 15860
![]() max = 4
[14272 ],
= (3 + 2 + 1) / 2 = 3,
= 6,
+
= 9Vibrational distribution
(fig. 3.2) = 0 1 = 1 0.207 = 2 0.0306 = 3 0.00270 = 4 9.60
10-5 | |||

Fig. 3.2 Vibrational distribution of OH formed via
O(
) + CH4
|
Problem-3.3 Calculate the prior vibrational distribution of OH formed by O( ) + C2H6
OH + C2H5
( = -210.7
, ZPE(C2H5) = 148.5
) similarly to above, and compare it with
the cases for O( ) + H2 and
O( ) + CH4.
|
[Atoms] (except for the excited states of rare gas atoms)
(spectrum) Term :

: electron spin q. n.
: electron orbital angular momentum
q. n.
: total angular momentum q. n.
[
] : symbolic representation of
- S, P, D, F, G, H, ... for
= 0, 1, 2, 3, 4, 5, ...
Total degeneracy : 
Degeneracy of the fine-structure state:

ex.)
| term | |
|
|
|
|
fine str. term |
![]() | 2 | 0 | 5 | 5 | 2 | |
![]() | 0 | 1/2 | 2 | 2 | 1/2 | |
![]() | 1 | 1/2 | 6 | 2 | 1/2 | ![]() |
| 4 | 3/2 | ![]() | ||||
![]() | 1 | 1 | 9 | 1 | 0 | ![]() |
| 3 | 1 | ![]() | ||||
| 5 | 2 | ![]() | ||||
| ex.) | branching ratio | ||||
HCl + ![]() |
H +
Cl( ) |
(a) | 4
trans(a) | ||
H +
Cl( ) |
(b) | 2
trans(b) | |||
[Linear Molecules]
(spectrum) Term :

: projection of
to the molecular axis
: projection of
to the molecular axis
[
]: symbolic representation of
-
,
,
,
, ... (for
=
0, 1, 2, 3, ...)
(+-): parity (+ or -, only for S states)
Total degeneracy : 
Degeneracy of the fine-structure state :

ex.)
| term | |
|
|
|
+
|
fine str. term |
![]() | 2 | 0 | 2 | 2 | 2 | |
![]() | 0 | 1/2 | 2 | 1 | 1/2 | |
![]() | 1 | 1/2 | 4 | 2 | 1/2 | ![]() |
| 2 | 3/2 | ![]() | ||||
![]() | 1 | 1 | 6 | 2 | 0 | ![]() |
| 2 | 1 | ![]() | ||||
| 2 | 2 | ![]() | ||||
| ex.) | branching ratio | ||||
| NH3 | H2 +
NH( ) |
(X) | 3
vib-sum(X) | ||
H2 +
NH( ) |
(a) | 2
vib-sum(a) | |||
[Non-Linear Molecules]
(spectrum) Term :

: symmetry species of the electronic
state ...
,
',
2,
1,
,
, etc.
Total degeneracy :

Degeneracy of the fine-structure state :

ex.)
| term | |
|
|
fine str. term |
![]() | 0 | 3 | 3 | |
![]() | 1/2 | 2 | 1 | |
![]() | 1/2 | 4 | 2 | ![]() |
| 2 | ![]() | |||
| ex.) | branching ratio | ||||
| CH3OH | H +
CH3O( ) |
(X) | 4
vib-sum(X) | ||
H +
CH3O( ) |
(A) | 2
vib-sum(A) | |||
[Number of optical isomers]
| ex.) | branching ratio | ||||
CFCl2Br +
![]() |
Cl( ) +
CFClBr |
(a) | 2
vib-sum(a) | ||
Br( ) +
CFCl2 |
(b) | 2
vib-sum(b) | |||
channel-a
two optical isomers for CFClBr
(= two reaction pathway = inversion doubling)
[Rotational distribution and nuclear spin statistics]
- Nuclear spin
:

- Resultant total nuclear spin of a molecule
:

- Bose/Fermi particle-Bose/Fermi statistics
(symmetric/assymmetric to permutation)
| ex.) |
H2( = 0) -
Rotational state distribution- H nucleus : = 1/2
(= proton / Fermi particle)
tot should be
Asymmetric- elec
( ) : Sym.,
vib
( = 0) : Sym. |
| ortho-H2 | para-H2 | ||
![]() |
1 ( ) | 0 ( ) | |
n.s |
Sym. | ![]() | Asym. |
rot |
Asym. | ![]() | Sym. |
![]() |
1, 3, ... (odd) | |
0, 2, ... (even) |
|
3 ( ) |
1
( ) | |
| ex.) |
N2 or D2( = 0) -
Rotational state distribution- N or D nucleus : = 1
(Bose particle)
tot should be
Symmetric |
| ortho-N2/D2 | para-N2/D2 | ||
![]() |
0 ( ) or
2 ( ) |
1 ( ) | |
n.s |
Sym. | ![]() | Asym. |
rot |
Sym. | ![]() | Asym. |
![]() |
0, 2, ... (even) | |
1, 3, ... (odd) |
|
(1+5) ( ) |
3
( ) | |
-
= 2
either in
sym. or asym. rotational state, rotational density of states is 1/2
|
Problem-3.4 Calculate the prior branching fractions for the reaction of O( ) with CH4,
1 = 11.96266
, = 8.31451
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||