Having succeeded to run BEx1D tools, let us investigate the sample input and ouput files in detail in the next three steps.
Sample problem 1: wagOHbenTSabs
bx1fitPlls input: wagOHbenTSabs.fit
'#'
is a title line:# CH-OH wag of OH + benzene H abstraction TS (mass weighted coordinate)
outputOption powerSerieswhich tells bx1fitPlls to generate input file for bx1VIBsol named
'wagOHbenTSabs.inp'
. Note that bx1VIBsol only
accept power series potential and the regression function defined
in the following block must be a power series.optFuncs{ const pow 2 pow 4 pow 6 pow 8 pow 10 pow 12 }defines the regression function. The key
'const'
stands for a constant term, and 'pow n'
means
xn. Thus, this example is a
polynomial;
y = a0
+ a1x2
+ a2x4
+ a3x6
+ a4x8
+ a5x10.xyTable{ 0. 0. 0.175395353 40.11886525 0.354069718 189.0859545 0.538962708 521.7658202 0.73251983 1134.26377 0.936579205 2136.432343 1.152654481 3654.297605 1.382347157 5833.785823 1.627451293 8827.658145 1.889951279 12732.18273 }where each line in the block beginning with 'xyTable{' terminating by '}' contains one datum point, in the order of x (coordinate) and y (potential energy). As shown in Fig. QS2-2, the potential energy curve is anharmonic.
continue{ numBasis 501 ! number of basis functions rotConst 1.89349 ! rotational constant [cm-1] hoFreq 73.3072 ! harmonic oscillator frequency [cm-1] ! ! output vector ! (and/or function) ! tempRange 300 570 30 tempRange 600 950 50 tempRange 1000 2000 100 }Any line in this block is merely copied to the bx1VIBsol input,
'wagOHbenTSabs.inp'
. Although bx1fitPlls neither
reads nor checks the contents of this block, they must be proper
input for bx1VIBsol.bx1fitPlls console output
'wagOHbenTSabs.inp'
. Other
diagnostic messages and related statistics are printed to the console.===== results of linear least squares regression ===== Function: y = a0 + a1 * x^2 + a2 * x^4 + a3 * x^6 + a4 * x^8 + a5 * x^10 + a6 * x^12The parameters to be optimized are numbered consecutively,
a0
, a1
, a2
, ..., as they
appear in the optFuncs block.Optimum parameters (+-) standard deviations (relative) a0 = -1.0306367e+000 (+-) 1.3167189e+000 ( 127.76 %) a1 = 1.2877844e+003 (+-) 2.0212666e+001 ( 1.57 %) a2 = 2.0746208e+003 (+-) 7.4216348e+001 ( 3.58 %) a3 = -1.2492067e+003 (+-) 1.0363676e+002 ( 8.30 %) a4 = 5.3098393e+002 (+-) 6.5249151e+001 ( 12.29 %) a5 = -1.2179626e+002 (+-) 1.8647156e+001 ( 15.31 %) a6 = 1.1063236e+001 (+-) 1.9588634e+000 ( 17.71 %)show the optimum parameters and their estimated errors.
Parameter correlation coefficients a0 a1 a2 a3 a4 a5 a1 -0.68038 a2 0.53582 -0.95926 a3 -0.46231 0.90454 -0.98652 a4 0.41867 -0.85999 0.96386 -0.99420 a5 -0.39058 0.82631 -0.94249 0.98355 -0.99721 a6 0.37162 -0.80129 0.92476 -0.97281 0.99186 -0.99858
wagOHbenTSabs.inp
wagOHbenTSabs.fit
:# CH-OH wag of OH + benzene H abstraction TS (mass weighted coordinate)
continue
block contents:numBasis 501 ! number of basis functions rotConst 1.89349 ! rotational constant [cm-1] hoFreq 73.3072 ! harmonic oscillator frequency [cm-1] ! ! output vector ! (and/or function) ! tempRange 300 570 30 tempRange 600 950 50 tempRange 1000 2000 100In this example, number of basis functions (
numBasis
)
is 501, meaning that the harmonic oscillator basis functions (so-called
Hermite-Gaussian functions) for quantum number 0 to 500 are used as
the expansion basis. The next key, rotConst
(or
equivalently, hbar2/2m
), sets the rotational constant
( = 2 /
2I ) or 2
/ 2m. The exponent parameter, α, of the
Hermite-Gaussian basis is set by the hoFreq
, the harmonic
oscillator frequency, input.output
key input. This key controls
the output of bex1VIBsol.potPars{ ! potential parameters 0 -1.0306367 2 1287.7844 4 2074.6208 6 -1249.2067 8 530.98393 10 -121.79626 12 11.063236 }Each line in the block specifies the order ni and coefficient ai for the power series term, aixni.
'wagOHbenTSabs_eigen_values.csv'
(eigen values) and
'wagOHbenTSabs_part_funcs.csv'
(partition functions).
Optionally, by setting the output
key in the input,
'wagOHbenTSabs_eigen_vectors00.csv'
(eigen vectors)
and 'wagOHbenTSabs_eigen_funcs00.csv'
(eigen functions)
will be also created.
number | eigenValue | w |
0 | 50.340893 | (1/1) |
1 | 156.5024 | (1/1) |
2 | 268.75298 | (1/1) |
3 | 385.86919 | (1/1) |
4 | 507.03996 | (1/1) |
5 | 631.67864 | (1/1) |
6 | 759.33796 | (1/1) |
7 | 889.66457 | (1/1) |
8 | 1022.3721 | (1/1) |
... | ... | ... |
10000/T | T | Q |
33.333333 | 300 | 1.882205 |
30.30303 | 330 | 2.0603718 |
27.777778 | 360 | 2.2366488 |
25.641026 | 390 | 2.4112197 |
23.809524 | 420 | 2.5842349 |
... | ... | ... |