Synopsis
ratout.dat ratout.csv popout.dat
Description
MASTER input
rc2h2ph_s_mas.dat
, generated
from a sample RRKM input rc2h2ph_s_rrkm.inp
by rrkmth
is shown below.phenylc2h2 2-channel (ch3-ch*,ch4-cc*) simple mode… ·· 1 TITLE 400 2 100 ·· 2 INC,NCHAN,INCCHK 0.1000E-05 0.1000E-05 0.1000E-05 ·· 3 ERR1,ERR2,ERR3 30.162 ·· 4 E0 -2 ·· 5 NALPHA 400. ·· 6 ALPHAV(I),I=1,NALPHA 0 1 ·· 7 IXV,JXV 7 ·· 8 NP 0.7600E+02 0.7600E+03 0.7600E+04 0.7600E+05 0.760… ·· 9 PR(I),I=1,NP 0.0 ·· 10 PALMT 0 ·· 11 JAV 6 ·· 12 NTEMP 2000.00 1000.00 666.67 500.00 400.00 … ·· 13 TEMPV(I),I=1,NTEMP 4.240 103.055 28.013 271.000 ·· 14 SGMA,WT1,WT2,EPS 1 2 ·· 15 IOPTHT,IOPTPR 802 ·· 16 NDEGS 0.1087E+02 0.1497E+02 0.3474E+02 0.5180E+02 0.105… ·· 17 RHO(I),I=1,NDEGS 0.4236E+03 0.6678E+03 0.1040E+04 0.1559E+04 0.235… : : (snip) 0.3899E+33 0.4048E+33 0.4203E+33 0.4364E+33 : 2000.000 0.892 ·· 18 TEMPV(I),CORRAT(I),I=1,NTEMP 1000.000 0.845 : 666.667 0.804 : 500.000 0.766 : 400.000 0.728 : 300.000 0.661 : 697 ·· 22 NRATES 0.1661E-11 0.6560E-10 0.8237E-09 0.6482E-08 0.388… ·· 23 R1(I),I=1,NRATES 0.3285E-05 0.1183E-04 0.3974E-04 0.1259E-03 0.379… : : (snip) 0.1247E+13 0.1251E+13 0.1249E+13 0.1239E+13 : 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.000… ·· 24 R2(I),I=1,NRATES 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.000… : : (snip) 0.3238E+13 0.3259E+13 0.3279E+13 0.3283E+13 :
1. | TITLE | |
Title; up to 80 characters. | ||
2. | INC,NCHAN,INCCHK | |
INC,NCHAN: as in RRKM input; INCCHK = value of INC used in RRKM (aborts if INCCHK ≠ 100). | ||
3. | ERR1,ERR2,ERR3 | |
ERR1: tolerance for truncation of maximum energy considered (i.e., the value of "infinity" in the upper bound of the integrations); ERR2: tolerance for eigenvalue convergence; ERR3: tolerance for truncation of P(E,E'). | ||
4. | E0 | |
critical energy E0 (or lowest critical energy if a multichannel reaction), in kcal mol−1. If J-conservation option used, E0 is lowest rotational barrier. | ||
5. | NALPHA | |
no. of values of α. * if input as negative (NALPHA < 0), mas55c3 does calculations assuming
the temperature dependent α = α0(T / 1000)β, where α0 is read as ALPHAV(1) and β = |NALPHA| / 2.
For this case, only one value of α is read in the next input. | ||
6. | ALPHAV(I),I=1,NALPHA | |
array of α values (cm−1). | ||
7. | IXV,JXV | |
Parameters for functional form of P(E,E'). | ||
8. | NP | |
number of pressures. | ||
9. | PR(I),I=1,NP | |
array of pressures, in torr. | ||
10. | PALMT | |
parameter for eigenvector calculation: all g(E) for E < E0 × PALMT assigned their equilibrium value. | ||
11. | JAV | |
must be always 0. | ||
12. | NTEMP | |
no. of input temperatures. | ||
13. | TEMPV(I),I=1,NTEMP | |
array of input temperatures (K). | ||
14. | SGMA,WT1,WT2,EPS | |
See RRKM input. | ||
15. | IOPTHT,IOPTPR | |
IOPTHT: if IOPTHT = 0, does low-pressure limit as well as calculation at input pressures
(required to obtain collision efficiency β). If IOPTHT ≠ 0,
only does calculation at input pressures. IOPTPR: parameter for criterion for eigenvalue convergence. If IOPTPR = 1, convergence uses only total rate for first two channels (used always for NCHAN=1 and can be used for NCHAN > 1 if desired); if IOPTPR = 2, requires convergence in channel 1 and channel 2 separately (usual value for NCHAN > 1, but IOPTPR=1 can be used for NCHAN > 1 if rate coefficients from the various channels are very different in magnitude). | ||
16. | NDEGS | |
no. of ρ(E) values to be read in. | ||
17. | RHO(I),I=1,NDEGS | |
array of ρ(E) values. | ||
18. | TEMPV(I),CORRAT(I),I=1,NTEMP | |
TEMPV(I): temperature (repeated from input no. 13); CORRAT(I): correction factor. | ||
22. | NRATES | |
no. of microscopic rate coefficients k(E) to be input. | ||
23. | R1(I),I=1,NRATES | |
list of k(E) for channel 1. | ||
24. | R2(I),I=1,NRATES | |
if NCHAN=1: list of zeroes; if NCHAN > 1: list of k(E) for channel 2. | ||
- Input no. 25 present only if NCHAN > 2 and looped through IN=3,NCHAN | ||
25. | Rn(I),I=1,NRATES | |
list of k(E) for channel n. |
Output
ratout.dat
and ratout.csv
.
The file, popout.dat
, containts the steady-state population.