平成 16 年度 熱力学 A

模擬 試験問題

科目名	_{教員名}			9月3日(金)2限		
熱力学 A	三好明			試験時間90分(10:50~12:20)		
指定クラス 1年 理2·3: 1-3,9-10, 12,16-17,19		解答用紙 両面 井面 2 枚	iia	†算用紙 ① 枚	持ち込みの有無 (関数)電卓 持込 可 ノート・教科書等: 持込 不可 x	

問題A

以下の問に答えよ。必要に応じて資料を参照せよ。

- A1. 圧力 1 bar における四塩化炭素 (CCl₄) の沸点は 350.0 K であり、沸点における標準蒸発エントロピーは 85.8 J K⁻¹ mol^{-1} である。標準蒸発エンタルピーは温度に依存しないと仮定して、298.0 K における CCl_4 の蒸気圧を推定せよ。
- A2. 以下の物質を等温 (298 K) で 1 bar から 50 bar に加圧した時のモルギブスエネルギー変化はいくらか。 a) 水素 (H₂、完全気体とする)
 - b) 食塩 (NaCl, 密度 2.168 g cm⁻³, 非圧縮性とする)
- A3. 圧力 1 bar, 温度 300 K の気体 He (単原子完全気体とする, 熱容量比 = 5/3) を断熱圧縮して圧力を 32 bar にした時の、温度を求めよ。
- A4. 以下のデータから、298 K における反応、Br₂(g) + 2 NO(g) ↔ 2 BrNO(g) の平衡定数、

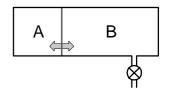
$$K = \frac{\left[p(\text{BrNO})/p^{\circ}\right]^{2}}{\left[p(\text{Br}_{2})/p^{\circ}\right]\left[p(\text{NO})/p^{\circ}\right]^{2}}$$
 を求めよ。

(298 K)	Br ₂ (g)	NO(g)	BrNO(g)
$\Delta_{\rm f} H^{\rm o}$ / kJ ${ m mol}^{-1}$	30.9	90.3	82.1
$S_{\rm m}^{\circ}$ / J K ⁻¹ mol ⁻¹	245.5	210.8	273.5

問題 B

以下の3問のうち、2問を選択して答えよ。必要に応じて資料を参照せよ。

- B1. 圧力 1 bar のもとでの沸点 (373.15 K) における水の蒸発エンタルピーは 40.66 kJ mol⁻¹ である。この温度・圧力における蒸発の内部エネルギー変化、ギブスエネルギー変化を求めよ。水の密度は 0.958 g cm⁻³ (373.25 K) であり、水蒸気は完全気体であるとする。
- B2. 右図に示す容器の A は完全気体で満たされており、自由に動くことのできる隔壁 (気体は透過できず、熱も移動できない) によって B と隔てられている。初期状態では、A, B ともに、温度 T_0 , 圧力 p_0 であり、外界の温度は $T_{\rm ex}$ ($=T_0$), 圧力は $p_{\rm ex}$ ($< p_0$) に保たれている。この状態から、B と外界の間に取り付けた開閉弁をゆっくりと開き、B の圧力が外圧 $p_{\rm ex}$ と等しくなるまで置いた。この間、隔壁が移動することで B と A の圧力は同じに保たれ



ている。以下の条件を仮定して、それぞれの場合の、1) A の最終体積、2) A が B にした仕事、3) A のエンタルピー変化、エントロピー変化、ギブスエネルギー変化、を求めよ。気体定数を R とし、A の初期体積を V_0 、初期エントロピーを S_0 、A の気体の熱容量比を γ とする。ただし、結果に与えられた定数 $(T_0, T_{\rm ex}, p_0, p_{\rm ex}, R, V_0, S_0, \gamma)$ 以外の定数を用いる場合は、それと与えられた定数の関係を明示すること。

- a) A が外界と自由に熱を交換できる場合。
- b) A が外界と熱を交換できない場合。
- B3. アセトン (CH₃COCH₃) とクロロホルム (CHCl₃) の混合物中の CHCl₃のモル分率が 0.4693 のとき、それぞれの部分モル体積は 74.166 cm³ mol⁻¹, 80.235 cm³ mol⁻¹ である。質量 1.00 kg の溶液の体積はいくらか。

— [1. 物理定数∙単位の換算∙原子量]

[数学・物理定数]

- · $\pi = 3.1415926536$ (円周率)
- · $R = 8.314472 \text{ J K}^{-1} \text{ mol}^{-1}$ (気体定数)
- $N_A = 6.02214199 \times 10^{23} \text{ mol}^{-1}$ (アボガドロ定数)
- $\cdot k = R / N_{A}$ (ボルツマン定数)
- ・g = 9.80665 m s⁻² (自由落下の標準加速度)

[単位の換算]

- ・0°C = 273.15 K (セルシウス温度目盛の零点)
- 1 bar = 10^5 Pa 1 atm = 101325 Pa

[原子量]

- H: 1.01 C:
- C: 12.01 N: 14.01
- .01 O: 16.00
- Na: 22.99 S: 32.07 Cl: 35.45

----[2. 重要な式]

- $\cdot {}^{(MA)}U_{m}(T) = {}^{(MA)}U_{m}(0) + \frac{3}{2}RT$
- \cdot (NLM) $U_{\rm m}(T)\sim$ (NLM) $U_{\rm m}(0)+3RT$
- $\cdot dU = dq + dw$
- (エネルギー保存則
- $\cdot C_V = \left(\frac{\partial U}{\partial T}\right)_V, C_p = \left(\frac{\partial H}{\partial T}\right)_P$
- $(C_V, C_p$ 定義)
- $\cdot H = U + pV$ (H 定義
- · A = U TS (A 定義)
- $\cdot G = H TS$ (G 定義)
- $\cdot C_{p,m} C_{V,m} = R$
- $pV^{\gamma} = \text{const.}, TV^{\gamma-1} = \text{const.}$
- $\cdot \quad \gamma = \frac{C_p}{C_V} \tag{γ 定義}$
- $\cdot \left(\frac{\partial H}{\partial T}\right)_{V} = \mu_{T} \left(\frac{\partial p}{\partial T}\right)_{V} + C_{p}, \quad \mu_{T} = \left(\frac{\partial H}{\partial p}\right)_{T}$
- $\cdot \mu = \left(\frac{\partial T}{\partial p}\right)_H = -\frac{\mu_T}{C_p}$
- · $dS = \frac{dq_{rev}}{T}$ (S 定義)
- $\cdot dS \ge \frac{dq}{T}$
- (クラウジウスの不等式)
- $\cdot \ \Delta_{\rm fus} S = \frac{\Delta_{\rm fus} H}{T_{\rm f}} \,, \ \Delta_{\rm vap} S = \frac{\Delta_{\rm vap} H}{T_{\rm b}}$
- $\cdot dU = TdS pdV$

- (基本式)
- $\cdot \left(\frac{\partial U}{\partial S}\right)_{V} = T, \left(\frac{\partial U}{\partial V}\right)_{S} = -p$
- $\cdot dH = TdS + Vdp$
- $\cdot dG = Vdp SdT$
- $\cdot \left(\frac{\partial G}{\partial p}\right)_T = V, \left(\frac{\partial G}{\partial T}\right)_p = -S$

- · $\left[\frac{\partial \left(G/T\right)}{\partial T}\right]_{p} = -\frac{H}{T^{2}}$ (ギブス-ヘルムホルツの式)
- · $\mu = \left(\frac{\partial G}{\partial n}\right)_{T,p}$ (μ 定義)
- $\cdot \mu = \mu^{\circ} + RT \ln \left(\frac{p}{p^{\circ}} \right)$
- ・ $\frac{\mathrm{d}p}{\mathrm{d}T} = \frac{\Delta_{\mathrm{trs}}S}{\Delta_{\mathrm{trs}}V}$ (クラペイロンの式
- · $\frac{\mathrm{d} \ln p}{\mathrm{d}T} = \frac{\Delta_{\mathrm{vap}} H}{RT^2}$ (クラウジウス-クラペイロン式)
- $V_{i} = \left(\frac{\partial V}{\partial n_{i}}\right)_{p,T,n_{i\neq i}} \tag{V_{i}$ 定義)
- $\cdot \ \mathrm{d}V = V_\mathrm{A} \mathrm{d}n_\mathrm{A} + V_\mathrm{B} \mathrm{d}n_\mathrm{B} \,, \ V = n_\mathrm{A} V_\mathrm{A} + n_\mathrm{B} V_\mathrm{B} \label{eq:Value}$
- · $\mu_i = \left(\frac{\partial G}{\partial n_i}\right)_{p,T,n_{i\neq i}}$ (μ_i 定義)
- $\cdot G = n_{\rm A} \mu_{\rm A} + n_{\rm B} \mu_{\rm B}$
- $\cdot n_{A} d\mu_{A} + n_{B} d\mu_{B} = 0$
- · $\sum_{i} n_{i} d\mu_{i} = 0$ (ギブス-デュエム式)
- $\cdot \Delta_{\min} G = nRT(x_A \ln x_A + x_B \ln x_B)$
- $\cdot \quad \Delta_{\text{mix}} S = -nR(x_{\text{A}} \ln x_{\text{A}} + x_{\text{B}} \ln x_{\text{B}})$
- $\Delta_{\rm r}G = \mu_{\rm B} \mu_{\rm A}$
- $RT \ln K = -\Delta_{\rm r} G^{\circ}$
- $\cdot K = \begin{pmatrix} \frac{p_{X}}{p^{\circ}} & \frac{p_{Y}}{p^{\circ}} & \cdots \\ \frac{p_{A}}{p^{\circ}} & \frac{p_{B}}{p^{\circ}} & \cdots \\ p^{\circ} & p^{\circ} & p^{\circ} \end{pmatrix}_{\rho}$ (質量作用の法則)

模擬試験問題