平成 16 年度 熱力学 A 追試験問題

科目名 熱力学 A	教員名 三好 明		11月1日 (月)1限 試験時間 90分 (9:00~10:30)		
指定クラス: 1年 理2・3: 1-3, 9-10, 12, 16-17, 19		解答用紙 両面 1 枚		計算用紙	持込不可
質問は受け付けない。問題に誤りがあると思う場合は、それを指摘・ 修正したとで解答せよ					

以下の問 (Q1-Q4) に答えよ。必要に応じて右の資料を参照せよ。Q1,Q2,Q4 の解答の最終結果には、問題に与えられた定数・変数、および物理定数のみを用い、これら以外を含んではならない。Q3 は数値及び、その単位を答えること。

- Q1. 図 1. は理想的なスターリングエンジンの指示図(p-V線図)である。 $A \rightarrow B$, $C \rightarrow D$ は等温可逆変化であり、温度は順に T_h , T_c である。 $B \rightarrow C$, $D \rightarrow A$ は等容変化であり、体積は順に V_0 , V_1 である。 $B \rightarrow C$ でエンジン内部の蓄熱器に熱を蓄え、これを $D \rightarrow A$ で利用するため、この 2 つの等容変化は外部との熱の出入りなしに起こる。C 点の圧力を p_0 とし、エンジン内部の気体は完全気体であるとする。
 - (a) このエンジンが 1 サイクルでする仕事 w_{cycle} を求めよ。
 - (b) このエンジンの熱効率 ε を求めよ。

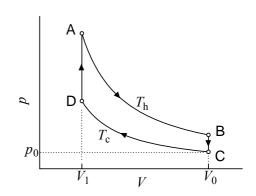


図 1. スターリングエンジンの指示図

- **Q2**. ある有機化合物の標準圧力 p° における沸点は T_b であり、温度 T_1 ($< T_b$) における蒸気圧は p_1 である。 気体は完全気体であるとし、液体の体積は、気体の体積に比較した場合、十分小さく無視できるとする。蒸発エンタルピーは温度に依存しないと仮定して、圧力 p° 、温度 T_b における (a) 蒸発のエントロピー変化 $\Delta_{\rm vap}S$ と、(b) 蒸発の内部エネルギー変化 $\Delta_{\rm vap}U$ を求めよ。
- Q3. 気体反応, $H_2(g) + Cl_2(g) \rightarrow 2 \ HCl(g)$, の平衡定数, $K = \left\{ \frac{\left[p(\mathrm{HCl})/p^\circ\right]^2}{\left[p(\mathrm{H_2})/p^\circ\right]\left[p(\mathrm{Cl_2})/p^\circ\right]}\right\}_e$, は温度 400 K で 500 K における値の 66000 倍である。この温度領域では、反応エンタルピー・反応エントロピーの温度依存性は無視できる。これから気体 HCl の標準生成エンタルピーを求めよ。ただし、 $\ln(66000) = \log_e(66000) = 11.1$,気体定数は $R = 8.3 \ \mathrm{J \ K^{-1} \ mol^{-1}}$ である。
- **Q4**. ある純物質の標準圧力 p° における融点は $T_{\rm f}^\circ$ である。この物質の固体および液体の密度を順に $\rho_{\rm sol}$, $\rho_{\rm liq}$, 融解エンタルピーを $\Delta_{\rm fus}H^\circ$ とし、温度・圧力に依存しないものとする。任意の圧力 $p\ (>p^\circ)$ における融点 $T_{\rm f}$ を推定する式を導け。この物質の分子量を M とする。

[資料]

----[重要な式]

$$\cdot {}^{(MA)}U_{\rm m}(T) = {}^{(MA)}U_{\rm m}(0) + \frac{3}{2}RT$$

·
$$^{(NLM)}U_{\rm m}(T) \sim ^{(NLM)}U_{\rm m}(0) + 3RT$$

・
$$dU = dq + dw$$
 (エネルギー保存則

$$\cdot C_{V} \equiv \left(\frac{\partial U}{\partial T}\right)_{V}, \quad C_{p} \equiv \left(\frac{\partial H}{\partial T}\right)_{p} \qquad (C_{V}, C_{p} \mathbb{E}_{3})$$

$$H \equiv U + pV$$
 (H 定義)

·
$$A \equiv U - TS$$
 (A 定義)

·
$$G \equiv H - TS$$
 (G 定義)

$$C_{p,m} - C_{V,m} = R$$

$$pV^{\gamma} = \text{const.}, TV^{\gamma-1} = \text{const.}$$

$$\cdot \quad \gamma \equiv \frac{C_p}{C_V}$$
(γ 定義)

$$\cdot \left(\frac{\partial H}{\partial T}\right)_{V} = \mu_{T} \left(\frac{\partial p}{\partial T}\right)_{V} + C_{p}$$

·
$$\mu_T \equiv \left(\frac{\partial H}{\partial p}\right)_T$$
, $\mu \equiv \left(\frac{\partial T}{\partial p}\right)_H = -\frac{\mu_T}{C_p}$ $(\mu_T, \mu$ 定義)

$$dS = \frac{dq_{rev}}{T}$$
 (S 定義)

·
$$dS \ge \frac{dq}{T}$$
 (クラウジウスの不等式)

$$\cdot \Delta_{\text{fus}} S = \frac{\Delta_{\text{fus}} H}{T_{\text{f}}}, \Delta_{\text{vap}} S = \frac{\Delta_{\text{vap}} H}{T_{\text{b}}}$$

·
$$dU = TdS - pdV$$
 (基本式)

$$\cdot \left(\frac{\partial U}{\partial S}\right)_{V} = T, \left(\frac{\partial U}{\partial V}\right)_{S} = -p$$

$$\cdot dH = TdS + Vdp$$

$$\cdot dG = Vdp - SdT$$

$$\cdot \ \left(\frac{\partial G}{\partial p}\right)_T = V \ , \ \left(\frac{\partial G}{\partial T}\right)_p = -S$$

·
$$\left[\frac{\partial \left(G/T\right)}{\partial T}\right]_{p} = -\frac{H}{T^{2}}$$
 (ギブス-ヘルムホルツの式)

$$(エネルギー保存則)$$
 $\mu \equiv \left(\frac{\partial G}{\partial n}\right)_{T,p}$ $(\mu 定義)$

$$(C_{V}, C_{p}$$
定義)
$$\cdot \mu = \mu^{\circ} + RT \ln \left(\frac{p}{p^{\circ}} \right)$$
 $(H$ 定義)

·
$$\frac{\mathrm{d}p}{\mathrm{d}T} = \frac{\Delta_{\mathrm{trs}}S}{\Delta_{\mathrm{trs}}V}$$
 (クラペイロンの式)

·
$$\frac{\mathrm{d} \ln p}{\mathrm{d} T} = \frac{\Delta_{\mathrm{vap}} H}{RT^2}$$
 (クラウジウス-クラペイロン式)

$$V_{i} \equiv \left(\frac{\partial V}{\partial n_{i}}\right)_{p,T,n_{i\neq i}} \tag{V_i 定義}$$

$$\cdot dV = V_A dn_A + V_B dn_B, V = n_A V_A + n_B V_B$$

·
$$\mu_i \equiv \left(\frac{\partial G}{\partial n_i}\right)_{p,T,n_{i\neq i}}$$
 (μ_i 定義)

$$\cdot \ G = n_{\rm A} \mu_{\rm A} + n_{\rm B} \mu_{\rm B}$$

$$\cdot n_{\rm A} \mathrm{d}\mu_{\rm A} + n_{\rm B} \mathrm{d}\mu_{\rm B} = 0$$

·
$$\sum_{i} n_{i} d\mu_{i} = 0$$
 (ギブス-デュエム式)

$$\cdot \Delta_{\min} G = nRT(x_A \ln x_A + x_B \ln x_B)$$

$$\Delta_{\text{mix}} S = -nR(x_{\text{A}} \ln x_{\text{A}} + x_{\text{B}} \ln x_{\text{B}})$$

$$\cdot \ \Delta_{\rm r}G = \mu_{\rm B} - \mu_{\rm A}$$

$$RT \ln K = -\Delta_r G^{\circ}$$

$$\cdot K = \left(\frac{\frac{p_X}{p^{\circ}} \frac{p_Y}{p^{\circ}} \dots}{\frac{p_A}{p^{\circ}} \frac{p_B}{p^{\circ}} \dots} \right)_{\rho}$$
 (質量作用の法則)