4. Surface and Particle Equilibria

(Reactive Condensation)

In the equilibrium state of $AB(s) \rightleftharpoons A(g) + B(g)$,

$$\mu[AB(s)] = \mu[A(g)] + \mu[B(g)]$$
 (4.1)

By ignoring the pressure dependence of $\mu[AB(s)]$ and using (0.6),

$$-\Delta_{r}G^{\circ} = \mu^{\circ}[AB(s)] - \mu^{\circ}[A(g)] - \mu^{\circ}[B(g)] = RT \ln K$$
(4.2)

where
$$K \equiv \frac{p_{\rm A}}{p^{\circ}} \frac{p_{\rm B}}{p^{\circ}}$$

Exercise 4.1

1) Compute the equilibrium constant for $NH_4NO_3(s) \rightleftharpoons NH_3(g) + HNO_3(g)$ from the following data

$$\Delta_{\rm f}G^{\circ}(298~{
m K}) \, / \, {
m kJ~mol}^{-1}$$
 $NH_4NO_3({
m s}) \qquad -183.9$
 $NH_3({
m g}) \qquad -16.5$
 $HNO_3({
m g}) \qquad -73.9 \quad {
m [JANAF]}$

2) Calculate the minimum p at which $NH_4NO_3(s)$ starts to form for the case $p(NH_3) = p(HNO_3) = p$.

Solution to Exercise 4.1

1)
$$\Delta_r G^\circ = (-16.5) + (-73.9) - (-183.9) = 93.5 \text{ kJ mol}^{-1}.$$

 $K = \exp(-93.5 \times 1000 / 8.3145 \cdot 298) = 4.09 \times 10^{-17}.$
2) $p / p^\circ = K^{1/2} = 6.4 \times 10^{-9}, p = 6.4 \times 10^{-9} \text{ bar } (\sim 6.3 \text{ ppb})$

(Surface Tension)

A work dw necessary to increase the surface area by $d\sigma$ is given as,

$$dw = \gamma d\sigma \tag{4.3}$$

where γ is the surface tension with a unit of J m⁻² = N m⁻¹. The difference between the pressure inside a spherical droplet (radius r), $p_{1,\text{droplet}}$, and the ambient pressure, p_a , is given by,

$$p_{\rm l, droplet} - p_{\rm a} = \frac{2\gamma}{r}$$
 (Laplace equation) (4.4)

Exercise 4.2

1) Compute the pressure difference, $p_{1, \text{droplet}} - p_{a}$, for water droplets with radii 0.1 µm and 10 nm from the following value.

$$\gamma$$
 (298 K) / N m⁻¹ water 7.2×10⁻²

2) Estimate the depression of the freezing point of these water droplets by using the results of Exercise 2.2 ($dT_{fus}/dp = -7.418 \times 10^{-3} \text{ K bar}^{-1}$). Assume γ is independent of temperature.

Solution to Exercise 4.2

1)
$$r = 0.1 \ \mu\text{m}$$
: $p_{1, \text{ droplet}} - p_{a} = (2 \times 7.2 \times 10^{-2}) / 0.1 \times 10^{-6} / 1 \times 10^{5} = 14.4 \ \text{bar}$.
 $r = 10 \ \text{nm}$: $p_{1, \text{ droplet}} - p_{a} = (2 \times 7.2 \times 10^{-2}) / 10 \times 10^{-9} / 1 \times 10^{5} = 144 \ \text{bar}$.

2) By using the result of exercise 2.2,
$$dT/dp = -7.418 \times 10^{-3} \text{ K bar}^{-1}$$
, $r = 0.1 \text{ } \mu\text{m}$: $\Delta T_f = -7.418 \times 10^{-3} \times 14.4 = -0.107 \text{ K}$ $r = 10 \text{ } n\text{m}$: $\Delta T_f = -7.418 \times 10^{-3} \times 144 = -1.07 \text{ K}$

^{*} The freezing point depression of water droplet comes from the fact $V_{\rm m}(s) > V_{\rm m}(l)$. For most of the metals, $V_{\rm m}(s) < V_{\rm m}(l)$ and the freezing point depression cannot be explained by surface tension.

(Vapor Pressure above Droplet Surface)

Below, p^* and p denote the vapor pressures above a plane surface and the droplet surface, respectively. By equating the chemical potentials in liquid and gas phases, and using (0.9) and (0.6),

$$V_{\rm m} \frac{2\gamma}{r} = RT \ln \left(\frac{p}{p^*} \right) \tag{4.5}$$

where $V_{\rm m}$ is the molar volume of the liquid. By a transformation one can obtain,

$$\frac{p}{p^*} = \exp\left(\frac{2\gamma V_{\rm m}}{rRT}\right) \quad \text{(Kelvin equation)} \tag{4.6}$$

Exercise 4.3

Compute the supersaturation [%] = $100 (p/p^* - 1)$ of the water vapor above the surfaces of water droplet of radii 0.1 µm and 10 nm. Use the density of water $\rho = 0.997$ g cm⁻³.

Solution to Exercise 4.3

 $V_{\rm m} = 18.02 \ / \ 0.997 = 18.07 \ {\rm cm^3 \ mol^{-1}} = 1.807 \times 10^{-5} \ {\rm m^3 \ mol^{-1}}$ $r = 0.1 \ \mu{\rm m}; \ p \ / \ p^* = \exp[2 \times 7.2 \times 10^{-2} \times 1.807 \times 10^{-5} \ / \ (0.1 \times 10^{-6} \times 8.3145 \times 298)] = 1.0106$ supersaturation: 1.06 %

r = 10 nm: $p / p^* = \exp[2 \times 7.2 \times 10^{-2} \times 1.807 \times 10^{-5} / (10 \times 10^{-9} \times 8.3145 \times 298)] = 1.111$ supersaturation: 11.1 %

(Cloud Condensation)

In the atmosphere, cloud is formed from nuclei (aerosols). For water-soluble nuclei, the vapor pressure above the droplet is also affected by the Raoult's law,

$$p = p^* (1 - x) \tag{4.7}$$

where p^* is the vapor pressure of pure solvent and x is the mole fraction of solute. By combining with the Kelvin effect (4.6),

$$\frac{p}{p^*} = (1 - x) \exp\left(\frac{2\gamma V_{\rm m}}{rRT}\right) \tag{4.8}$$

Exercise 4.4

Compute the supersaturation (%) of the water vapor above the surface of water droplet of radius 0.1 μ m containing sulfuric acid by mole fraction 1.0%. Assume the same γ , and $V_{\rm m}$, as water and the complete dissociation of sulfuric acid.

Solution to Exercise 4.4

 $p / p^* = [1 - 3/(99 + 1 \times 3)] \exp[2 \times 7.2 \times 10^{-2} \times 1.807 \times 10^{-5} / (0.1 \times 10^{-6} \times 8.3145 \times 298)] = 0.9808$ supersaturation: -1.92 %

* This droplet can grow at humidity > 98.1%, non-supersaturation condition.

^{*} homogeneous nucleation is expected to require very large supersaturation such as > 200%.