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88..  EExxpplloossiioonn  LLiimmiittss  aanndd  NNuummeerriiccaall  AAnnaallyyssiiss  
Explosion Limits 

With reactions 1–3 only, the H2-O2 mixture should explode at any T and p, but the actual mixture shows 
explosion limits.  For better description, we should add the following reaction. 
 

   n(chain carrier) 
M + O2 + H  M + HO2 (reaction-4, k4) –1 chain termination 

 

Here "M" means the any molecule, including H2, O2, N2 etc., and it means that the rate of reaction 
depends on the total concentration, [M] (or total pressure). 
   
Exercise 8.1 
1) Write the matrix A of the differential equation system 

x Ax  consisting of reactions 1–4.  Assume constant 
[O2], [H2], and [M] and use constants, r1, r2, r3, and r4 = 
k4[O2][M]. 

2) Write the eigen equation for the matrix A. 
3) Determine the conditions of r1 to r4 for max < 0, max = 0, 

and max > 0. 
 

 

Solution to exercise 8.1 
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= 3 + (r1 + r2 + r3 + r4)2 + (r2r3 + r3r4 + r4r2) + r2r3(r4 – 2r1) = 0. 
3) Similarly to Exercise 7.1, f () monotonically increases with 

 at  > 0.  So, the necessary conditions are:  
 r4 > 2r1 : f (0) > 0 and max < 0 
 r4 = 2r1 : f (0) = 0 and max = 0 
 r4 < 2r1 : f (0) < 0 and max > 0 

 

H2-O2 Explosion Limits 
 Explosion limits  max = 0 
2nd Limit: max = 0 in Exercise 8.1  ...  r4 = 2r1  k4[M] = 2k1 
1st Limit: appears by including heterogeneous removal of chain carriers 
3rd Limit: appears by including further reactions of HO2 and self-heating effect 

Sensitivity Analysis 
Definition of the normalized sensitivity coefficient for the concentration of i-th chemical species with 
respect to the rate constant for the j-th reaction is 
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where ci is the concentration of i-th chemical species and kj is the rate constant for the j-th reaction. 

Contribution Analysis 
The contribution of j-th reaction to the formation of i-th species is defined as 
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where vf(i, j) is the rate of formation of i-th species by the j-th reaction. 
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Example for Cl2-H2 
For the Cl2-H2 system considered in section 6, 

H2 + Cl  HCl + H (k1) r1 = k1[H2] 
Cl2 + H  HCl + Cl (k2) r2 = k2[Cl2] 

As derived in Exercise 6.2, the steady-state concentrations for the condition, [Cl] + [H] = c0 are, 
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Exercise 8.2 

1) Derive an expression of 
td

]HCld[
 for the steady-state condition in terms of r1, r2, and c0. 

Then, write an expression for [HCl] for the steady-state condition and [HCl] = 0 at t = 0. 
2) Derive the normalized sensitivity coefficient for [HCl] with respect to r1, S([HCl], r1), by 

differentiating the expression for [HCl] derived above, partially with respect to r1.  Similarly, 
derive the normalized sensitivity coefficient for [HCl] with respect to r2, S([HCl], r2). 

3) Calculate the values of S([HCl], r1) and S([HCl], r2) for 1:1 mixture of Cl2 and H2 at 298 K.  At 
this temperature, k1 = 9.8103 m3 mol–1 s–1 and k2 = 1.2107 m3 mol–1 s–1. 

4) Calculate the contributions to the formation of HCl by reactions 1 and 2, (HCl, 1) and (HCl, 2), 
respectively. 

 
 

Solution to exercise 8.2 
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3) Since [Cl2] = [H2],   2 2 2
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 * For this case, since r2 >> r1, Eq. (8.4) becomes [HCl]  2c0r1t. 

4) Rates of formation of HCl via reactions 1 and 2 are 0 1 2
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which are the same.  Thus (HCl, 1) = 0.5 and (HCl, 2) = 0.5. 
 

 

[Rate-Determining Step] 
 Both reactions 1 and 2 equally contribute HCl formation. 
 Reaction 1 is the rate-determining step for this system. 
 


