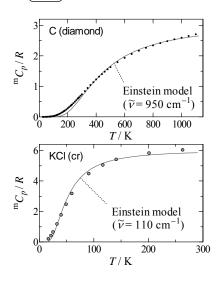

11.1 内部エネルギー・熱容量

	$\frac{^{\mathrm{m}}U}{RT}$	$\frac{{}^{\mathrm{m}}C}{R}$		適用温度 領域
並進	3/2	<u>3</u> 2	古典極限	全域 (除:極低温)
回転 (n _r :回転自由度)	$\frac{n_{\rm r}}{2}$	$\frac{n_{\rm r}}{2}$	古典極限	全域 (除:極低温)
1 つの振動 $\left(x = \frac{h\nu}{k_{\rm B}T}\right)$	$\frac{x}{e^x-1}$	$\frac{x^2e^x}{(e^x-1)^2}$		全域
	0	0	$T \rightarrow 0$	低温のみ
	1	1	<i>T→</i> ∞ (古典極限)	高温のみ
(

(参考)


単原子 固体 (Einstein 模型) $\frac{3x}{e^x - 1}$ $\frac{3x^2e^x}{(e^x - 1)^2}$ (Dulong-Petit 則) 3 3 $\frac{T \to \infty}{(古典極限)}$

11.3 固体のモル熱容量

△近似

△近似

Copyright © 2001–2016 by A. Miyoshi, All rights reserved.

11.4 エントロピー

	^m S / R
並進	$\frac{5}{2} + \ln q_{\text{trans}}^{\circ} - \ln \frac{p}{k_{\text{B}}T}$, ਲਹਾਪੜ $\frac{3}{2} \ln \frac{m}{\text{amu}} + \frac{5}{2} \ln \frac{T}{\text{K}} - \ln \frac{p}{\text{bar}} - 1.1517$
回転 (n _r : 回転自由度)	$rac{n_{ m r}}{2} + \ln q_{ m rot}$ $q_{ m rot}$ は回転分配関数: $q_{ m rot}^{ m 2D} = rac{k_{ m B}T}{\sigma B}$ または $q_{ m rot}^{ m 3D} = rac{n_{ m isom}\pi^{1/2}}{\sigma} igg(rac{k_{ m B}T}{A}rac{k_{ m B}T}{B}rac{k_{ m B}T}{C}igg)^{1/2}$
1 つの振動 $\left(x = \frac{h\nu}{k_{\rm B}T}\right)$	$\frac{x}{e^x - 1} - \ln(1 - e^{-x})$
電子状態	ln g _{elec}

11.5 他の熱力学関数

エンタルピー	H - H(0) = U - U(0) + pV
ヘルムホルツエネルギー	A - A(0) = U - U(0) - TS
ギブスエネルギー	G - G(0) = H - H(0) - TS