
5. 電子遷移

= 電子状態変化 (による光吸収・発光)

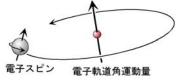
電子状態:分子(原子)軌道への電子の配置

ex.) Na-D 線 (~589 nm 橙色) : [Ne] $3s^03p^1 \leftarrow [Ne]3s^1$

電子励起状態 電子基底状態

5.1 電子スピン

= 電子の自転の角運動量


$$s$$
(電子1個のスピン量子数) = 1/2 (5.1)

S(分子全体のスピン量子数) = 0, 1/2, 1, 3/2, ... (5.2)

* Sには不対電子のみ寄与

スピン多重度 =
$$2S+1$$
 (5.3)

磁場中で、エネルギー状態が 2S+1 個に分裂する

スピンと軌道角運動量

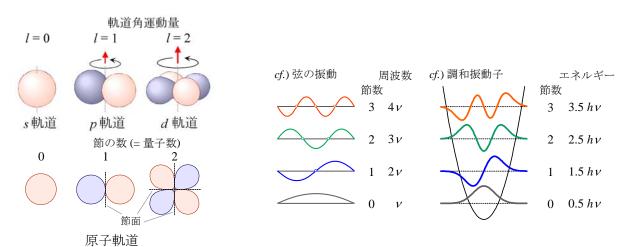
スピン多重度				
		1	1	
	1 	1 1 1 1 1 1 1 1 1 1 	1	
	一重項	二重項	三重項	
不対電子数	0	1	2	
S スピン量子数	0	1/2	1	
M_S S の z 軸射影 (磁場中の量子化)	0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\xrightarrow[-1]{0} \xrightarrow[+1]{z}$	
2 S + 1 スピン多重度	1	2	3	
例	He, H ₂ , CH ₄ , CH ₂ O(S ₀ ,基底状態)	NO, CH_3 (ラジカル)	O ₂ , CH ₂ O(T ₁ , 励起状態)	

→ 一重項, 二重項, ...

5.2 電子軌道角運動量

= 電子の(分子軌道中)公転の角運動量

[原子]


1(原子軌道の角運動量量子数)=0,1,2,... (5.4)

→ s 軌道, p 軌道, d 軌道, ...

L(原子全体の角運動量量子数) = 0, 1, 2, ... (5.5)

→ S 状態, P 状態, D 状態, ...

* L には不対電子のみ寄与

多重度

$$g_L = 2L + 1 (5.6)$$

電子状態の多重度(含むスピン)

$$g_e = (2S+1)(2L+1)$$
 (5.7)

原子の電子状態 (スペクトル項)

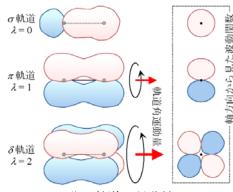
	原 1 の 电 1 状態(ハ・フ 1 ル境)		
		Na	F
	電子配置	[Ne]3s ¹	$[He]2s^22p^5$
		3s 1	2p + + +
	2 S + 1	2	2
	L	0 (s 軌道に 1)	1 (p 軌道に 1)
$^{2S+1}[L] \leftarrow$	電子状態	² S (doublet - S)	² P (doublet - P)
[2]	(スペクトル項)	二重項の S 状態	二重項の P 状態

[直線分子・結合]

 λ (1 電子軌道角運動量の分子軸への射影) = 0, 1, 2, ... (5.8)

 $\rightarrow \sigma$ 軌道, π 軌道, δ 軌道, ...

 Λ (全電子軌道角運動量の分子軸への射影) = 0, 1, 2, ... (5.9)


→ Σ 状態, Π 状態, Δ 状態, ...

* Λ には不対電子のみ寄与

多重度

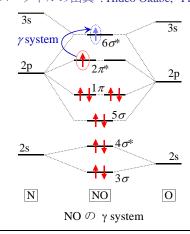
$$g_{\Lambda} = 2 \ (\Lambda > 0),$$

 $1 \ (\Lambda = 0)$ (5.10)

* 原子の角運動量 (2L+1) や二次元回転 (2J+1) と 多重度が異なるのは、これが一次元の回転運動であるためである。

分子軌道の対称性 (電子の軌道角運動量量子数の分子軸への射影)

ex.) NO \mathcal{O} γ -system $[A^2\Sigma^+ - X^2\Pi] (\sigma^* \leftarrow \pi^*)$


不対電子1個 ... 二重項

基底状態 : 不対電子 $\rightarrow 2\pi$ 軌道 ... $^2\Pi$ 状態 励起状態 : 不対電子 $\rightarrow 6\sigma$ 軌道 ... $^2\Sigma$ 状態

[8.3] NO の紫外 (150–230 nm) 吸収スペクトル (γ system)

NO (一酸化窒素) は紫外領域に規則的な系列の吸収スペクトルを示す。 このうち、 γ system と呼ばれる遷移は、電子基底状態 $X^2\Pi$ から $A^2\Sigma^+$ 状態への遷移に帰属される。 以下の出典のスペクトルには、 ~227 nm (励起状態の振動準位 '=0 への吸収) から ~152 nm ('=10 への吸収) までの吸収が見られる。

スペクトルの出典: Hideo Okabe, "Photochemistry of Small Molecules," Wiley-Interscience, New York, 1978. (p. 239)

8.4

NO の電子基底状態の電子配置は $[1\sigma^22\sigma^23\sigma^24\sigma^2]$ $5\sigma^21\pi^42\pi^1$ であり、 γ system 遷移は、主に 2π から 6σ への電子遷移と見なすことができる。 (励起状態の電子配置: $5\sigma^21\pi^46\sigma^1$) ただし 6σ 軌道は $2p\sigma$ より $3s\sigma$ の性質を強く示すため、 γ system は主量子数の変化する Rydberg (リュードベリ) 遷移であるとされる。

問題 5.1

- a) Na-D 線遷移の励起状態の電子状態 (スペクトル項) を書け。
- b) 水素原子の基底状態の電子状態 (スペクトル項) を書け。

(解)

- a) 電子配置は [Ne] $3s^0 3p^1$ である。
- ・不対電子は1つであるから S=1/2, スピン多重度 2S+1=2 (二重項)
- ・不対電子はl=1のp軌道に入っているので、L=1。従って 2 P項である。

[答] ²P項

b) 基底状態の電子配置は $1s^1$ である。S=1/2, 2S+1=2 から二重項であり、電子は l=0 の 1s 軌道にあるので、L=0 となる。従って基底状態は 2S 項である。

[答] ²S 項