平成16年度 物理化学Ⅱ 試験問題

問題A

以下の問 A1-A3 に答えよ。必要に応じて<u>別紙資料を参照</u>せよ。

- ・ ノート・教科書等持込不可
- ・電卓使用可 (なくても解答可能・ 忘れても貸し出し等は行わない)
- ・試験時間は90分 (10:15-11:45) 遅刻限度30分 (10:45)
- A1. 室温· 大気圧下の OH ラジカルの 307.9956 nm における吸光断面積 (底 e) は 2.2×10^{-15} cm² である。変調 吸収法と呼ばれる手法では、0.1 % 程度の微小な吸収を検出できる。大気中の OH ラジカル (濃度は 1×10^6 molecules cm $^{-3}$ 程度) をこの波長·この吸収法で検出するために必要な光路長を求めよ。
- A2. ヘキサクロロエタン (Cl_3C-CCl_3) の v_4 (ねじれ振動; 2 つの- CCl_3 基が逆方向に回る振動) の振動波数は 61 cm^{-1} である。調和振動子を仮定して 293 K における、振動量子数 v_4 = 1, 2 の状態の振動基底状態 (v_4 = 0) に対する存在比を求めよ。
- A3. 以下の (a)-(d) の光学遷移を、光子エネルギー (=hv) の大きい順に並べよ。
 - (a) フッ化水素 (HF) の純回転遷移 ($J=1\leftrightarrow 0$)
 - (b) フッ化重水素 (DF; $D={}^2H$) の純回転遷移 ($J=3\leftrightarrow 2$)
 - (c) オゾン (O₃) のハートレー帯 (電子遷移)
 - (d) 二酸化炭素 (CO₂) の v_3 (反対称伸縮) 振動遷移 ($v_3 = 1 \leftrightarrow 0$)

問題B

以下の7間 (B1-B7) から3間を選択して答えよ。必要に応じて \underline{N} 紙資料を参照せよ。選択した \underline{B} 15番号を明記すること。4間以上解答した場合は得点の高いものから3間が採用される。

B1. 1-クロロ-2-フルオロエテン (1C2FE) の異性体について、標準生成エンタルピー・回転定数は、下表の通りである。異性体間のエントロピー差は主に構造 (回転定数) の違いによる。異性化反応, $1C2FE(Z) \rightarrow 1C2FE(E)$, の 299 K におけるエントロピー変化 [単位: $J K^{-1} mol^{-1}$]、および平衡定数を計算せよ。

異性体	$\Delta H_f^{\circ}(299 \text{ K}) / \text{kJ mol}^{-1}$	$(ABC)^{1/3}$ (幾何平均回転定数) $/ \text{ cm}^{-1}$
Z 体 CI F (シス体)	-169.0	0.1880
E体 $C=C$ F (トランス体)	-165.7	0.2256

- B2. 以下の (a)–(e) の分子振動の、赤外活性・ラマン活性を解答例にならって答えよ。 [解答例] (f) 赤外 \times , ラマン \times
 - (a) エチレン (H₂C=CH₂) の v₂ (C-C 伸縮振動)
 - (b) ヘキサフルオロエタン (F_3C-CF_3) の v_4 (ねじれ振動; 2 つの -CF₃ 基が逆方向に回転)
 - (c) フッ化水素 (HF) の伸縮振動
 - (d) 二硫化炭素 (CS₂; 直線 S-C-S 構造) の v₂ (変角振動)
 - (e) 硫化水素 (H₂S, 二等辺三角形構造) の v₁ (対称 S-H 伸縮)
- B3. Mn^{2+} の電子配置は [Ar] $3d^5$ (高スピン配置 = S が最大になるよう d 軌道に電子が配置) である。 MnF_2 結晶の 295 K におけるモル磁化率の測定値, 0.1463 cm 3 mol $^{-1}$, と電子スピンのみから予想されるモル磁化率 を比較せよ。
- B4. 二酸化炭素 ¹²C¹⁶O₂; (O-C-O 直線構造) の回転定数は、0.3903 cm⁻¹ である。C-O 結合距離を求めよ。
- B5. 水素化リチウム LiH (7 Li 1 H) の赤外吸収は 1360 cm $^{-1}$ に観測される。重水素化リチウム LiD (7 Li 2 H) の赤外吸収波数を推定せよ。
- B6. 292 K のアンモニア (NH₃) 気体のモル分極が、誘電率の測定から $57.6 \, \mathrm{cm^3 \, mol^{-1}}$, 屈折率の測定から $5.7 \, \mathrm{cm^3 \, mol^{-1}}$ となった。屈折率は高周波電磁波 (光) で測定されるため、双極子の配向による分極は寄与しない。この測定値からアンモニアの分極率と双極子モーメントを推定せよ。
- B7. 炭素原子の電子基底状態は 3 つの微細状態, 3P_J ; J=0,1,2, に分裂しており、各状態の多重度は 2J+1, エネルギーは最低のものを基準にすると、 $E(^3P_0)=0$, $E(^3P_1)=16.4$ cm $^{-1}$, $E(^3P_2)=43.4$ cm $^{-1}$ である。295 K における、炭素原子基底状態の電子分配関数を計算せよ。

—— [1. 指数関数·自然対数·平方根]-

	指数	関数			自	然対	 数			<u>y</u>	平方根	
x	$\exp(x)$	\boldsymbol{x}	$\exp(x)$	x	ln(x)		\boldsymbol{x}	ln(x)	x	\sqrt{x}	x	\sqrt{x}
0.08	1.083	0.6	1.822	1.1	0.095		2.5	0.916	1.25	1.118	1.725	1.313
0.1	1.105	0.8	2.226	1.2	0.182		3	1.099	1.3	1.140	1.75	1.323
0.2	1.221	1	2.718	1.3	0.262		5	1.609	1.35	1.162	1.775	1.332
0.21	1.234	1.2	3.320	1.5	0.405		6	1.792	1.4	1.183	1.8	1.342
0.22	1.246	1.4	4.055	1.6	0.470		7	1.946	1.45	1.204	2.1	1.449
0.3	1.350	1.6	4.953	1.7	0.531		8	2.079	1.5	1.225	11.5	3.391
0.4	1.492	1.8	6.050	1.8	0.588		10	2.303	1.62	1.273	27.7	5.263
0.5	1.649	_ 2	7.389	2	0.693		1000	6.908	1.7	1.304	33.3	5.771

- [2. 物理定数・単位の換算など (有効数字 5 桁)]

$\pi = 3.1416$	(円周率)
$c_0 = 2.9979 \times 10^8 \text{ m s}^{-1}$	(真空中の光速)
$\varepsilon_0 = 8.8542 \times 10^{-12} \text{ F m}^{-1}$	(真空の誘電率)
$h = 6.6261 \times 10^{-34} \mathrm{J s}$	(プランク定数)
$N_{\rm A} = 6.0221 \times 10^{23} {\rm mol}^{-1}$	(アボガドロ数)
$R = 8.3145 \text{ J K}^{-1} \text{ mol}^{-1}$	(気体定数)
$k = R/N_A = 1.3807 \times 10^{-23} \text{ J K}^{-1}$	(ボルツマン定数)
$k = 0.69504 \text{ cm}^{-1} \text{ K}^{-1}$ ("; cm ⁻¹	⁻¹ はエネルギーの単位)
$g_e = 2.0023$	(電子のg値)
$1 D = 3.3356 \times 10^{-30} C m$	(デバイ単位)

$$\begin{split} \frac{h\nu}{kT} &= \frac{hc_0\widetilde{\nu}}{kT} = 1.4388 \frac{\widetilde{\nu} \, [\text{cm}^{-1}]}{T \, [\text{K}]} \\ \frac{h}{8\pi^2 c_0} &= 16.858 \, [\text{amu Å}^2 \, \text{cm}^{-1}] \\ \frac{N_{\text{A}} g_e^2 \, \mu_0 \mu_{\text{B}}^2}{3k} &= 6.3002 \times 10^{-6} \, [\text{K m}^3 \, \text{mol}^{-1}] \\ \text{ \mathbb{R}} \mathcal{F} \tilde{\text{g}} \tilde{\text{\ensuremath{\mathbb{E}}}} \, [\text{amu}] \quad (1 \, \text{amu} = 1 \times 10^{-3} / N_{\text{A}} \, \text{kg}) \\ ^1 \text{H:} \quad 1.0078 \quad ^2 \text{H(D)} : 2.0141 \quad ^7 \text{Li} : \quad 7.0150 \\ ^{12} \text{C:} \quad 12.0000 \quad ^{16} \text{O:} \quad 15.9949 \quad ^{19} \text{F:} \quad 18.9984 \end{split}$$

-- [3. 重要な式] -

• ランベルト-ベール則:
$$I = I_0 10^{-\varepsilon cl}$$
 (底 10)
$$I = I_0 e^{-\sigma cl}$$
 (底 e)

• 2粒子の換算質量:
$$\mu = \frac{m_1 m_2}{m_1 + m_2}$$

• 調和振動子の振動数:
$$v = \frac{1}{2\pi} \left(\frac{k_f}{\mu} \right)^{1/2}$$

• 調和振動子のエネルギー準位、多重度:
$$G(v) = \left(v + \frac{1}{2}\right)hv \,, \;\; g_v = 1 \quad [v = 0, 1, 2, ...]$$

• 慣性モーメント:
$$I = \sum m_i r_i^2$$
, $I = \mu r^2$ (二原子分子)

• 二次元剛体回転子のエネルギー準位、多重度:
$$F(J) = BJ(J+1), \ g_J = 2J+1 \quad [J=0,1,2,...]$$

• 回転定数:
$$B = \frac{\hbar^2}{2I} = \frac{\hbar^2}{8\pi^2 I}$$
 (エネルギー単位)
$$B = \frac{\hbar}{4\pi c_0 I} = \frac{\hbar}{8\pi^2 c_0 I}$$
 (波数単位)

• ボルツマン分布:
$$n_i \propto g_i \exp\left(-\frac{\varepsilon_i}{kT}\right)$$

反応 A→B の平衡定数:

$$K_c = \frac{Q_B}{Q_A} \exp\left(-\frac{\Delta E}{kT}\right) = \exp\left(\frac{\Delta S}{k}\right) \exp\left(-\frac{\Delta H}{kT}\right)$$

• 調和振動子 [x = hv/kT] $Q_{vib} = \frac{1}{1 - e^{-x}}$

$$\frac{U_{vib}}{kT} = \frac{x}{e^x - 1}, \quad \frac{S_{vib}}{k} = \frac{x}{e^x - 1} - \ln(1 - e^{-x})$$

• 剛体回転子 [非対称分子; $B_{av} = (ABC)^{1/3}$]

$$Q_{rot}^{2D} = \frac{kT}{B}, \qquad Q_{rot}^{3D} = \sqrt{\pi} \left(\frac{kT}{B_{av}}\right)^{3/2}$$

$$\frac{U_{rot}^{2D}}{kT} = 1, \qquad \frac{U_{rot}^{3D}}{kT} = \frac{3}{2}$$

$$\frac{S_{rot}^{2D}}{k} = 1 + \ln\frac{kT}{B}, \quad \frac{S_{rot}^{3D}}{k} = \frac{1}{2}\ln\pi + \frac{3}{2}\left(1 + \ln\frac{kT}{B_{av}}\right)$$

• 三次元並進 [相対並進では $m o \mu$]

$$Q_{trans}^{3D} = \left(\frac{2\pi mkT}{h^2}\right)^{3/2} V$$

$$\frac{U_{trans}^{3D}}{kT} = \frac{3}{2}, \quad \frac{S_{trans}^{3D}}{k} = \frac{5}{2} + \frac{3}{2} \ln \frac{2\pi mkT}{h^2} + \ln V$$

• 電子状態 [多重度 g_{elec}]

$$Q_{elec} = g_{elec}, \quad \frac{S_{elec}}{k} = \ln g_{elec}$$

• 誘電率 (デバイの式) とモル分極:

$$\frac{\varepsilon_r - 1}{\varepsilon_r + 2} = \frac{\rho P_m}{M}, \quad P_m = \frac{N_A}{3\varepsilon_0} \left(\alpha + \frac{\mu^2}{3kT} \right)$$

• モル磁化率
$$\chi_m = N_A \mu_0 \left(\xi + \frac{m^2}{3kT} \right)$$

• モル磁化率のスピンオンリー式:

$$\chi_m = \frac{N_{\rm A} g_e^2 \mu_0 \mu_{\rm B}^2 S \big(S+1\big)}{3kT}$$