8 熱力学関数と分配関数

- ここではすべて1分子あたりの量 モルあたりの量への変換: $\times N_{\mathrm{A}}$, $k \to R$
- 8.1 簡単な系の熱力学関数

3s $\stackrel{2}{\longrightarrow}$ ^{2}S 3s $\stackrel{2}{\longrightarrow}$

$$3s - P$$

$$g_e = g_S g_L$$
$$= 2 \cdot 1 = 2$$

$$g_e = g_S g_L$$

= 2.3 = 6

図 8.1 Na の電子状態

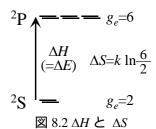
Na 原子の基底状態 2S と (D 線)励起状態 2P の平衡定数:

2
S: $S = 1/2, L = 0 \rightarrow g_{e} = (2S + 1)(2L + 1) = 2 \cdot 1 = 2$

2
P: $S = 1/2$, $L = 1 \rightarrow ge = 2.3 = 6$ (⊠ 8.1)

$$K_p = \frac{g_e(^2 \text{P})}{g_e(^2 \text{S})} \exp\left(-\frac{\Delta E}{kT}\right) = 3 \exp\left(-\frac{\Delta E}{kT}\right)$$
(8.1)

ギブスエネルギーと平衡定数の関係 ... Atkins 9章 (18)式 [6版], (5a)式 [4版]


•
$$kT \ln K_p = -\Delta G = -\Delta H + T\Delta S$$

(8.1) から

$$kT \ln K_p = -\Delta E + T(k \ln 3) \tag{8.3}$$

(8.2), (8.3) を比較すると

•
$$\Delta H = \Delta E$$
, $\Delta S = k \ln 3 = k \ln \left[\frac{g_e(^2 P)}{g_e(^2 S)} \right]$ (8.4)

- ・低温では $K_p << 1$, 高温では $K_p \rightarrow 3 \ (T \rightarrow \infty)$
- $\cdot^{2}P$: エネルギー的に不利 ($\Delta H > 0$)、エントロピー的には有利 ($\Delta S > 0$)

[一般の平衡定数]

$$K_c = \frac{Q_B}{Q_A} \exp\left(-\frac{\Delta E}{kT}\right) \tag{7.1}$$

•
$$\Delta H \sim \Delta E$$
, $\Delta S \sim k \ln \left[\frac{Q_B}{Q_A} \right]$ (8.5)

*'=' ではない

8.2 内部エネルギー

分子の基底状態からの励起エネルギーの期待値

$$U - U(0) = \frac{1}{Q} \sum_{i} \varepsilon_{i} g_{i} \exp(-\beta \varepsilon_{i})$$

$$= -\frac{1}{Q} \left(\frac{\partial Q}{\partial \beta} \right)_{V} = -\left(\frac{\partial \ln Q}{\partial \beta} \right)_{V}$$
(8.6)

$$\beta = 1 / kT$$

Ψ . U(0)**HC1** 図 8.3 内部エネルギー

の基準

分子運動からの寄与

振動
$$U_{vib} = \frac{x}{e^x - 1}kT$$
 $(x = hv/kT)$

回転
$$U_{rot} = \frac{r}{2}kT$$
 $(r: 回転の次元数)$

並進
$$U_{trans} = \frac{3}{2}kT$$

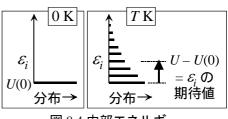


図 8.4 内部エネルギ

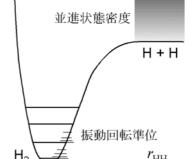
ex.) 室温 (298 K) における非直線分子 (r=3):

 $U_{trans} + U_{rot} = 3kT = 7.4 \text{ kJ mol}^{-1}$

ex.) H₂ と I₂ (振動数: 4162, 214.6 cm⁻¹) の振動エネルギー (298 K):

 $U_{vib}(H_2) = 7.8 \times 10^{-6} \text{ cm}^{-1} = 9.3 \times 10^{-8} \text{ kJ mol}^{-1}, \quad U_{vib}(I_2) = 118.0 \text{ cm}^{-1} = 1.4 \text{ kJ mol}^{-1}$

8.3 エントロピー


<u>分子運動からの寄与</u>

ex.) 1 H $_{2}$ と 127 I $_{2}$ (B: 59.3, $0.0374~\rm{cm}^{-1}$ / 振動数: 4162, 214.6 cm $^{-1}$) の 298 K, 1 atm におけるエントロピー

$$S_{vib}(H_2) = 3.3 \times 10^{-7}, \quad S_{vib}(I_2) = 8.4 \quad [J \text{ K}^{-1} \text{ mol}^{-1}]$$

 $S_{rot}(H_2) = 13.0, \quad S_{rot}(I_2) = 74.2 \quad [J \text{ K}^{-1} \text{ mol}^{-1}]$
 $S_{trans}(H_2) = 117, \quad S_{trans}(I_2) = 178 \quad [J \text{ K}^{-1} \text{ mol}^{-1}]$

ex.) H₂解離平衡 @ 1000 K, p = 1 atm

$$\Delta H/kT = 51.96 \ [\Delta U(0) = \Delta E] - 0.015 \ [U_{vib}] - 1 \ [U_{rot}] + 1.5 \ [U_{trans}] + 1 \ [pV = kT] = 53.44$$
 $\Delta S/k = -0.018 \ [S_{vib}] - 2.77 \ [S_{rot}] + 15.08 \ [S_{trans}] + 1.39 \ [S_{elec}] = 13.68$ $-\ln K_p = 39.76 \rightarrow K_p = 5.40 \times 10^{-18} \ [atm]$ ・H + H はエンタルピー的に不利, エントロピー(主に並進)的に有利

図 8.5 H₂の解離平衡

8.4 他の熱力学関数

ヘルムホルツ関数 $A-A(0)=-kT\ln Q$

エンタルピー
$$H-H(0)=U-U(0)+pV$$

ギブス関数
$$G-G(0)=A-A(0)+pV$$

問題 8.1

1) 298 K における、気相反応 $H_2+I_2\to 2$ HI の振動・回転・並進・電子状態のエントロピー変化 $(\Delta S_{vib}/k, \Delta S_{rot}/k, \Delta S_{trans}/k, \Delta S_{elec}/k)$ を以下の情報から計算せよ。

	H_2	${ m I}_2$	HI
振動波数 $\tilde{\nu}$ [cm ⁻¹]	4162	213	2230
回転定数 B [cm ⁻¹]	59.3	0.0373	6.43
回転対称数 σ	2	2	1
質量 m [amu]	2	254	128
電子状態の多重度	1	1	1

講義資料

2) 上の結果と下の標準生成エンタルピーの値から、298 K におけるこの反応の平衡定数を求めよ。

47 04 0			
	H_2	$I_2(g)$	HI
ΔH_f° (298 K) [kJ mol ⁻¹]	0	62.42	26.50